
Arca Sectors

Central Angle-an angle formed by two radii with the vertex at the center of the Circle LAPB

Intercepted Arc-Part of the Segments, rays or lines that intersect the Scircle

Minor Arc-Arc Smaller than a Semicircle

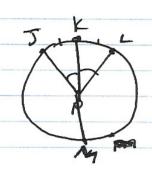
Major Arc AGB

major arc - Arc Bigger Than a Semicircle

mAB = measure miner arc AB mACB = measure major or ACB

m AB = m L AB = 95 * Central angle and intercepted minor Arc have the Same measur 2105 C B

m ACB = 360-m AB = 360-95=265


Ex1 Y 2 24

m. XZ = 115

m XYZ = 249

3100

The Measure of an arc is equal to the measure of its corresponding Central ange mJM = mLJPM

Congruent Central angles intercept Congruent arcs, and congruent arcs. are intercepted by congruent Central angles

LJPE= LKPL JR=KL

Arc Length

degrees

S=arclength

arclength - arcmeasure

Circumference 3600

S = 0 => S = 0 . C => S = 0 . 27 r C 360° 360° 360° 0

360 digrees &

radians

S= O.C. S= O.XAr S=Or S = 0 C 2m

radians)

Cx2

a) Circle with radius is 4 and central angle is 80°

b) Circle with radius is to and central angle is T

Area of a Sector
$$A = \frac{Q}{360^{\circ}}$$

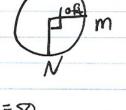
Ex4 A= 78 . 1. 102 360

360 7809 1 260 17 = 130 11 369 12 6

65 TT

A-60 Tr. 82

A=3840 T = 32 T

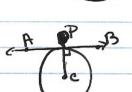


$$800 \frac{1}{1} \frac{8 \text{cm}}{4 + b^{2} = 8}$$

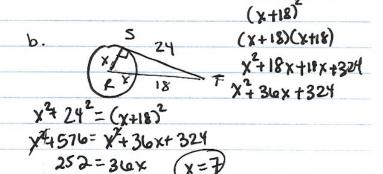
$$\frac{161b^{2} = 64}{b^{2} = 48}$$

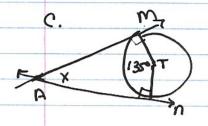
$$\frac{161b^{2} = 48}{b^{2} = 48}$$

A= 90°. 611.102 A=2517 Sector triangle & b. h = 2(10×10)=50 2517-50 = 28.5442

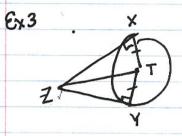

Tangent to a Circle-line in the plane of the circle that intersects the circle at exactly one point

Set 4 lesson2


Point of tangency-the point Where the tangent intersects the Circle


Theorem 10-1 IPAB, is tangent to OC at P, then AB is perpendicular to CP

Converse Theorem 10-1 if IB is perpendiculars to the radius CP at P, then AB is targent to OC



117 /100

135+90+x +90=360 315+x=360 x=45°

Theorem 10-2

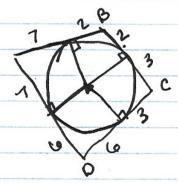

If two segments with a

Common end point exterior

to the Circle are tangent to the

Circle, then the segments are

Congruent



 $\chi^{2}r$ 6371^{2} $(35786+6371)^{2}$ $\chi^{2}+40,589,641=1,777,212,649$ $\chi^{2}=1,736,623,008$ $\chi \approx 41,673$ km distance time= d=r= d=t $\frac{41,673}{300,000}$

try it

Perimeter
(1+2) +(2+3) + (3+4) + (7+6)

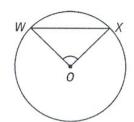
310

10-1 Reteach to Build Understanding

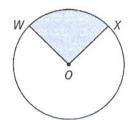
Arcs and Sectors

 The length of an arc and the area of a sector are fractions of the circumference and the area of the circle, respectively, based on the central angle measure. Select the formulas you would use to answer the questions.

Fo	rm	ul	as


$$s = \frac{n}{360} \cdot 2\pi$$

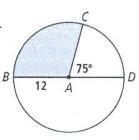
$$C = 2\pi i$$


$$s = \frac{n}{360} \cdot 2\pi r$$
 $C = 2\pi r$ $A = \frac{n}{360} \cdot \pi r^2$ $A = \pi r^2$

$$A = \pi r^2$$

Find arc length WX given $m \angle WOX = 65^{\circ}$ and radius is 3 ft.

Find the area of the shaded sector given $m \angle WOX = 65^{\circ}$ and radius is 3 ft.


2. The radius of a circle is 5 in. and the central angle measure of an arc is $\frac{\pi}{5}$ radians. Ashton finds the length of an arc in inches as shown. What is his error? What is the correct arc length expressed in terms of π ?

$$s = \frac{n}{360}(2\pi r)$$

$$= \frac{\frac{\pi}{5}}{360}(2\pi (5))$$

$$= \frac{\pi^2}{360}$$

Find the length of BC and the area of the shaded region. First, find n° , the measure of the central angle of BC. This is also central angle measure of the sector.

Use the arc length formula.

$$s = \frac{n}{360} \cdot 2\pi r$$

$$= \frac{1}{360} \cdot 2\pi (\underline{})$$

$$= \underline{} \pi$$

Use the area formula for a sector.

$$A = \frac{n}{360} \cdot \pi r^2$$

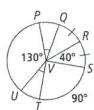
$$= \frac{1}{360} \cdot \pi (\underline{})^2$$

$$= \underline{} \pi$$

10-1 Additional Practice

PearsonRealize.com

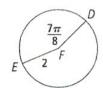
Arcs and Sectors


Use ⊙V to find each arc measure.

1. QR

2. PQ

3. STU


4. PSU

Find each arc length. Express each answer in terms of π .

- 5. length of \widehat{AB}
- **6.** length of \widehat{DE}

Find the area of the shaded sector. Round to the nearest tenth.

7.

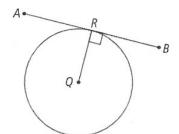
8

Find the area of the shaded segment. Round to the nearest tenth.

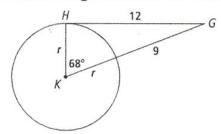
9.

10

11. The length of \widehat{GF} is 4 m. What is the radius of the circle? Round to the nearest tenth.

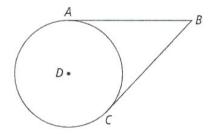

- **12.** What is the area of the sector bounded by $\widehat{\mathit{GF}}$? Round to the nearest tenth.
- 13. If an arc with measure 60° has length 5π on a circle with radius r, what is the length of a 60° arc on a circle with radius 2r? Explain.
- 14. A pizza with radius 7 in. is cut into 12 equal-sized pieces. What is the area of each piece? Round to the nearest hundredth of an inch.

PearsonRealize.com


10-2 Reteach to Build Understanding

Lines Tangent to a Circle

A tangent is a line that touches a circle at exactly one point. In the diagram, \overline{AB} is tangent to $\odot Q$. \overline{AB} is perpendicular to the radius \overline{QR} .


1. Use the figure shown to answer the questions.

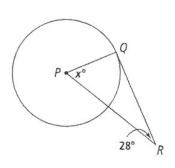
 \overline{GH} is tangent to $\odot K$.

- a. Which segment is perpendicular to \overline{HG} ?
- **b.** What is the measure of $\angle KHG$?
- c. What type of triangle is $\triangle GHK$?
- d. How are HK, HG, and GK related by the Pythagorean Theorem?
- **2.** Seth calculates *AB* in the figure shown. Check his work and answer. Is he correct? If not, correct his error.

The radius of $\odot D$ is 3, BC = 6, and \overline{AB} and \overline{BC} are tangent to $\odot D$.

$$AB^2 = BC^2 + r^2$$

$$AB^2 = 6^2 + 3^2$$

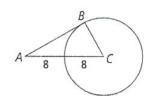

$$AB^2 = 45$$

$$AB = 3\sqrt{5}$$

3. \overline{QR} is tangent to $\odot P$. What is the value of x? Because \overline{QR} is tangent to $\odot P$, \overline{QR} and \overline{PQ} are

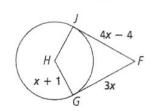
$$m \angle PQR =$$

 $x^{\circ} =$ $-m \angle PQR - m \angle R$

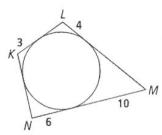

10-2 Additional Practice

PearsonRealize.com

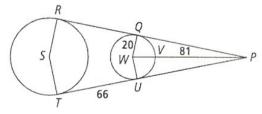
Lines Tangent to a Circle

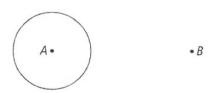

In Exercises 1 and 2, segment \overline{AB} is tangent to $\odot C$. Find each value.

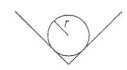
- 1. AB or
- 2. m∠ABC



In Exercises 3-5, find each value.


3. \overline{JF} and \overline{GF} are tangent to $\odot H$. What is HJ?


4. \overline{KL} , \overline{LM} , \overline{MN} , and \overline{KN} are tangent to the circle. What is the perimeter of KLMN?


5. \overline{RP} and \overline{TP} are tangent to $\odot S$ and $\odot W$. What is RP?

6. Construct a tangent to $\odot A$ that passes through B.

- 7. If two segments share an endpoint and are tangent to the same circle at their other endpoints, what must be true of the segments?
- **8.** A marble with radius *r* rolls in a L-shaped track. How far is the center of the marble from the corner of the track?

